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Effective electrostatic interactions between colloidal particles, coated with polyelectrolyte brushes and sus-
pended in an electrolyte solvent, are described via linear-response theory. The inner cores of the macroions are
modeled as hard spheres, the outer brushes as spherical shells of continuously distributed charge, the microions
(counterions and salt ions) as point charges, and the solvent as a dielectric continuum. The multicomponent
mixture of macroions and microions is formally mapped onto an equivalent one-component suspension by
integrating out from the partition function the microion degrees of freedom. Applying second-order perturba-
tion theory and a random-phase approximation, analytical expressions are derived for the effective pair inter-
action and a one-body volume energy, which is a natural by-product of the one-component reduction. The
combination of an inner core and an outer shell, respectively impenetrable and penetrable to microions, allows
the interactions between macroions to be tuned by varying the core diameter and brush thickness. In the
limiting cases of vanishing core diameter and vanishing shell thickness, the interactions reduce to those derived
previously for star polyelectrolytes and charged colloids, respectively.
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I. INTRODUCTION

Polyelectrolytes[1,2] are ionizable polymers that dissolve
in a polar solvent, such as water, through dissociation of
counterions. Solutions of polyelectrolytes are complex mix-
tures of macroions and microions(counterions and salt ions)
in which direct electrostatic interactions between macroions
are screened by surrounding microions. Polyelectrolyte
chains, grafted or adsorbed by one end to a surface at high
concentration, form a dense brush that can significantly
modify interactions between surfaces in solution. When at-
tached to colloidal particles, e.g., latex particles in paints or
casein micelles in milk[3], polyelectrolyte brushes can sta-
bilize colloidal suspensions by inhibiting flocculation[4,5].
Biological polyelectrolytes(biopolymers), such as proteins
in cell membranes, can modify intercellular and cell-surface
interactions.

Conformations and density profiles of polyelectrolyte
(PE) brushes have been studied by a variety of experimental,
theoretical, and simulation methods, including dynamic light
scattering[6], small-angle neutron scattering[7–9], transmis-
sion electron microscopy[9], neutron reflectometry[10], sur-
face adsorption[11], atomic force microscopy[12], self-
consistent-field theory[13–19], scaling theory [18–21],
Poisson-Boltzmann theory[22], Monte Carlo simulation
[22], and molecular-dynamics simulation[23,24]. Compara-
tively few studies have focused on electrostatic interactions
between PE brush-coated surfaces. Interactions between neu-
tral surfaces—both planar and curved(spherical)—with
grafted PE brushes have been modeled using scaling theory
[20], while interactions between charged surfaces coated
with oppositely charged PEs have been investigated for pla-
nar [22] and spherical(colloidal) surfaces[25] via Monte

Carlo simulation and a variety of theoretical methods.
While microscopic models that include chain and micro-

ion degrees of freedom provide the most realistic description
of PE brushes, simulation of such explicit models for more
than one or two brushes can be computationally demanding.
The purpose of the present paper is to develop an alternative,
coarse-grained theoretical approach, based on the concept of
effective interactions, which may prove useful for predicting
thermodynamic and other bulk properties of suspensions of
PE brush-coated colloids. Modeling each brush as a spherical
shell of continuously distributed charge, we adapt linear-
response theory, previously developed for charged colloids
[26–28] and PEs[29], to derive effective electrostatic inter-
actions. The theory is based on mapping the multicomponent
mixture onto an equivalent one-component system of
“pseudomacroions” by integrating out from the partition
function the degrees of freedom of the microions. Within the
theory, microions play three physically important roles: re-
ducing (renormalizing) the bare charge on a macroion;
screening direct Coulomb interactions between macroions;
and generating a one-body volume energy. The volume
energy—a natural by-product of the one-component
reduction—contributes to the total free energy and can sig-
nificantly influence thermodynamic behavior of deionized
suspensions.

Outlining the remainder of the paper, Sec. II defines the
model suspension of PE brush-coated colloids; Sec. III re-
views the linear-response theory; Secs. IV and V present
analytical and numerical results for counterion density pro-
files, effective pair interactions, and volume energies in bulk
suspensions; and finally, Sec. VI summarizes and concludes.

II. MODEL

The system of interest is modeled as a suspension ofNm
spherical, core-shell macroions of charge −Ze (valenceZ),
core radiusa, and PE brush shell thicknessl (outer radius
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R=a+ l), andNc point counterions of chargeze in an elec-
trolyte solvent in volumeV at temperatureT (see Fig. 1). The
core is assumed to be neutral, the macroion charge coming
entirely from the PE shell. Assuming a symmetric electrolyte
and equal salt and counterion valences, the electrolyte con-
tains Ns point salt ions of chargeze and Ns of charge −ze.
The microions thus numberN+=Nc+Ns positive andN−
=Ns negative, for a total ofNm=Nc+2Ns. Global charge neu-
trality in a bulk suspension constrains macroion and counter-
ion numbers viaZNm=zNc. Number densities of macroions,
counterions, salt ions, and positive/negative microions are
denoted bynm, nc, ns, andn± , respectively. Within the primi-
tive model of ionic liquids[30], the solvent is treated as a
dielectric continuum of dielectric constante, which acts only
to reduce the strength of Coulomb interactions between ions.

In PE solutions, the counterions can be classified into four
regions: (i) those within narrow tubes enclosing the PE
chains, of radius comparable to the Bjerrum length,lB
=e2/ sekBTd; (ii ) those outside of the tubes but still closely
associated with the chains;(iii ) those not closely associated
with the chains, but still inside of the PE shells; and(iv)
those entirely outside of the macroions. Counterions in re-
gions(i), (ii ), (iii ) can be regarded as trapped by the macro-
ions, while those in region(iv) are free to move throughout
the suspension. Within region(i), the counterions may be
either condensed and immobilized on a chain or more
loosely bound and free to move along a chain. These chain-
localized(condensed or mobile) counterions tend to distrib-
ute uniformly along, and partially neutralize, the chains. In
our model, counterions in regions(i) and(ii ) act to renormal-
ize the bare macroion valence. The parameterZ thus should
be physically interpreted as aneffectivemacroion valence,
generally much lower than the bare valence(number of ion-
izable monomers). From the Manning counterion condensa-
tion criterion [1], according to which the linear charge den-
sity of a PE chain saturates at,e/lB, we can expect the bare
charge in an aqueous solution to be renormalized down by at
least an order of magnitude.

The local number density profiles of charged monomers
in the PE brushes,rmonsrd, and of counterions,rcsrd, are
modeled here as continuous, spherically symmetric distribu-
tions. Charge discreteness can be reasonably neglected if we
ignore structure on length scales shorter than the minimum
separation between charges. Spherical symmetry of charge
distributions can be assumed if intra-macroion chain-chain
interactions, which favor isotropic distribution of chains,
dominate over inter-macroion interactions, which favor
anisotropy.

The density profile of charged monomers depends on the
conformations of chains in the PE shells. Electrostatic repul-
sion between charged monomers tends to radially stretch and
stiffen PE chains. Indeed, neutron scattering experiments[8]
on diblock (neutral-charged) copolymer micelles, as well as
simulations[24], provide strong evidence that the arms of
spherical PE brushes can exhibit rodlike behavior. Here we
assume the ideal case of fully stretched chains of equal
length—a porcupine conformation[20]—and model the
charged monomer number density profile by

rmonsrd =5
0, r . R

Z

4plr 2 , a , r ø R

0, r ø a,

s1d

wherer is the radial distance from the macroion’s center. The
model thus neglects configurational entropy of the PE chains,
although it does include the entropy of the microions.

III. THEORY

For the model suspension defined above, our goal is to
predict distributions of microions inside and outside of the
PE brushes and effective interactions between macroions.
Adapting the general response theory approach previously
applied to charged colloids[26–28] and PE solutions[29],
we reduce the multicomponent mixture to an equivalent one-
component system governed by effective interactions, and
approximate the effective one-component Hamiltonian via
perturbation theory. To simplify notation, we initially ignore
salt ions. The Hamiltonian then decomposes, quite generally,
into three terms,

H = HmshRjd + Hcshr jd + HmcshRj,hr jd, s2d

where hRj and hr j denote collective coordinates of macro-
ions and counterions, respectively. The first term in Eq.(2),

Hm = Hhc +
1

2 o
iÞ j=1

Nm

vmmsuRi − R jud, s3d

is the macroion Hamiltonian, which includes a hard-core
contributionHhc (kinetic energy and hard-core interactions),
and an electrostatic contribution due to the bare Coulomb
pair interaction potential

vmmsrd =
Z2e2

er
s4d

at center-center separationr. The second term in Eq.(2),

Hc = Kc +
1

2 o
iÞ j=1

Nc

vccsur i − r jud, s5d

is the Hamiltonian of the counterions with kinetic energyKc
interacting via the Coulomb pair potentialvccsrd=z2e2/er.
The third term in Eq.(2),

FIG. 1. (a) Polyelectrolyte (PE) brush-coated colloidal
sphere and(b) model considered here, in which the PE monomer
charge distribution is assumed continuous and varying as 1/r2,
a, r ,a+ l.
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Hmc= o
i=1

Nm

o
j=1

Nc

vmcsuRi − r jud, s6d

is the macroion-counterion interaction, which also may be
expressed in the form

Hmc=E dRrmsRd E drrcsr dvmcsuR − r ud, s7d

wherermsRd=oi=1
Nm dsR−Rid andrcsr d=o j=1

Nc dsr −r jd are the
macroion and counterion number density operators, respec-
tively, andvmcsuR−r ud is the macroion-counterion interaction
potential(to be specified in Sec. IV).

The mixture of macroions and counterions can be for-
mally reduced to an equivalent one-component system by
integrating out the counterion coordinates. Denoting traces
over counterion and macroion coordinates byklc and klm,
respectively, the canonical partition function can be ex-
pressed as

Z = Škexps− bHdlc‹m = kexps− bHeffdlm, s8d

where b=1/kBT, Heff=Hm+Fc is the effective one-
component Hamiltonian, and

Fc = − kBT lnkexpf− bsHc + Hmcdglc s9d

is the free energy of a nonuniform gas of counterions in the
presence of the macroions.

Now regarding the macroions as an “external” potential
for the counterions, we invoke perturbation theory
[26–28,30] and write

Fc = F0 +E
0

1

dlkHmcll, s10d

whereF0=−kBT lnkexps−bHcdlc is the reference free energy
of the unperturbed counterions, thel integral charges the
macroions (i.e., the PE brushes) from neutral to fully
charged,Hmc represents the perturbing potential of the mac-
roions acting on the counterions, andkHmcll is the mean
value of this potential in a suspension of macroions charged
to a fractionl of their full charge.

Two formal manipulations prove convenient. First, we
convert the free energy of the unperturbed counterions to that
of a classical one-component plasma(OCP) by adding and
subtracting, on the right side of Eq.(10), the energy of a
uniform compensating negative background[31], Eb=
−Ncncv̂ccs0d /2. Herenc=Nc/ fVs1−hhcdg is the average den-
sity of counterions in the free volume—i.e., the total volume
reduced by the volume fractionhhc=s4p /3dnma3 of the mac-
roion hard cores—andv̂ccs0d is thek→0 limit of the Fourier
transform ofvccsrd. Equation(10) then becomes

Fc = FOCP+E
0

1

dlkHmcll − Eb, s11d

where FOCP=F0+Eb is the free energy of a homogeneous
OCP excluded from the colloidal hard cores. Second, we
expressHmc in terms of Fourier components,

kHmcll =
1

Vo
kÞ0

v̂mcskdr̂mskdkr̂cs− kdll

+
1

V
lim
k→0

fv̂mcskdr̂mskdkr̂cs− kdllg, s12d

where v̂mcskd is the Fourier transform of the macroion-
counterion interaction and wherer̂mskd=o j=1

Nmexps−ik ·R jd
and r̂cskd=o j=1

Nc exps−ik ·r jd are Fourier components of the
macroion and counterion number density operators. Thek
=0 term is singled out because the number of counterions,
Nc= r̂cs0d, does not respond to the macroion charge, but
rather is fixed by the constraint of global charge neutrality.

Further progress requires approximations for the counter-
ion free energy. Applying second-order perturbation(linear-
response) theory, the counterions are assumed to respond lin-
early to the macroion external potential,

rcsr d =E dr 8xsr − r 8d E dr 9rmsr 9dvmcsr 8 − r 9d s13d

or

r̂cskd = xskdv̂mcskdr̂mskd, k Þ 0, s14d

wherexskd is the linear-response function of the OCP.
Combining Eqs.(11)–(14), the effective Hamiltonian can

be expressed in the form of the Hamiltonian of a one-
component pairwise-interacting system,

Heff = Hhc +
1

2 o
iÞ j=1

Nm

veffsuRi − R jud + E0, s15d

where veffsrd=vmmsrd+vindsrd is an effective electrostatic
macroion-macroion pair interaction that augments the
bare macroion interactionvmmsrd by a counterion-induced
interaction

v̂indskd = xskdfv̂mcskdg2. s16d

The final term in Eq.(15) is the volume energy,

E0 = FOCP+
Nm

2
lim
r→0

vindsrd

+ Nmlim
k→0

F−
1

2
nmv̂indskd + ncv̂mcskd +

Z

2z
ncv̂ccskdG ,

s17d

which emerges naturally from the one-component reduction.
Although independent of the macroion coordinates, the vol-
ume energy depends on the average macroion density and
thus has the potential to significantly influence thermody-
namics. Evidently, the effective interactions depend on the
macroion structure through the specific form of the
macroion-counterion interactionvmc in Eqs.(16) and (17).
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The OCP linear-response function, proportional to the
corresponding static structure factorSskd, may be obtained
from liquid-state theory[30]. In practice, the OCP is weakly
correlated, with coupling parameterG=lB/ac!1, whereac
=s3/4pncd1/3 is the counterion sphere radius. For example,
for hard-sphere macroions of radiusa=50 nm, valenceZ
=500, and volume fractionhhc=0.01, in water at room tem-
peratureslB=0.714 nmd, we find G.0.02. As in previous
work on charged colloids[27,28] and polyelectrolytes[29],
we adopt the random-phase approximation(RPA), which is
valid for weakly coupled plasmas. The RPA equates the OCP
two-particle direct correlation function to its exact
asymptotic limit: cs2dsrd=−bvccsrd. Using the Ornstein-
Zernike relation,Sskd=1/f1−ncĉ

s2dskdg, the linear-response
function then takes the form

xskd = − bncSskd = −
bnc

s1 + k2/k2d
, s18d

where k=Î4pncz
2lB is the Debye screening constant(in-

verse screening length). Note that the screening constant,
which involves the density of counterions in the free volume,
naturally incorporates the excluded volume of the macroion
cores. Withxskd specified, the counterion density can be cal-
culated from the macroion-counterion interaction and Eq.
(14) for a given macroion distribution(see Sec. IV). Finally,
salt ions can be easily incorporated by introducing additional
response functions[28]. The pair interaction and volume en-
ergy are then modified only through a redefinition of the
Debye screening constant:k=Î4psnc+2nsdz2lB, where ns

=Ns/ fVs1−hhcdg is the average number density of salt ion
pairs in the free volume.

Generalization of response theory to incorporate leading-
order nonlinear microion response entails three-body effec-
tive interactions, as well as corrections to the effective pair
potential and volume energy[32]. Nonlinear effects are gen-
erally significant, however, only in concentrated, deionized
suspensions of highly charged macroions[32] and are ig-
nored here. It has been shown that response theory, com-
bined with the RPA, is formally equivalent to Poisson-
Boltzmann theory[32]. Both approaches rely on mean-field
approximations that neglect microion fluctuations and pre-
dict microion distributions of the same general form, aside
from a distinction in the screening constant, which response
theory corrects for excluded volume of the macroion cores.
Advantages of response theory over Poisson-Boltzmann
theory are its predictions of(i) the entire effective Hamil-
tonian, including the one-body volume energy, which is es-

sential for a complete description of phase behavior
[26–28,33–36], and (ii ) a more accurate expression for the
Debye screening constant that incorporates the macroion
excluded-volume correction.

IV. ANALYTICAL RESULTS

For our porcupine model of a spherical PE brush with
1/r2 monomer density profile, Gauss’s law gives the electric
field around a macroion as

Esrd =5 −
Ze

e

1

r2 , r . R

−
Ze

e

r − a

lr 2 , a , r ø R

0, r ø a.

s19d

Integration overr yields the electrostatic potential energy
between a brush and a counterion,

vmcsrd =5
−

Zze2

er
, r . R

−
Zze2

el
F1 −

a

r
− lnS r

R
DG , a , r ø R

−
Zze2

el
Fa − lnS a

R
DG , r ø a,

s20d

wherea is an arbitrary constant, which arises becausevmcsrd
is not uniquely defined inside the hard core. Following van
Roij and Hansen[35], we choosea below by requiring that
the counterion density vanish inside the hard core. Fourier
transforming Eq.(20) yields

v̂mcskd = −
4pZze2

ek3l
Gska,kR;ad, s21d

where the function Gska,kR;ad is defined as

Gsx1,x2;ad = sincsx2d − sincsx1d − afx1cossx1d − sinsx1dg,

s22d

with sincsxd;e0
xdu sinsud /u. We can now calculate, in the

dilute limit, the counterion number density profile around a
single macroion, takingr̂mskd=1. From Eqs.(14), (18), and
(21), the Fourier component of the density profile is

r̂cskd =
Z

z

k2

klsk2 + k2d
Gska,kR;ad, s23d

which in real space takes the form

rcsrd =
Z

z

k

4plr 5Sska,kR;ade−kr , r . R

Sska,kr ;ade−kr + Ecs− kr,− kRdsinhskrd, a , r ø R

fEcs− ka,− kRd + as1 + kade−kagsinhskrd, r ø a.

s24d
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For simplicity, we have introduced two functions,
Ssx1,x2;ad and Ecsx1,x2d, which are defined, respectively, as

Ssx1,x2;ad = shisx2d − shisx1d − afx1coshsx1d − sinhsx1dg
s25d

and

Ecsx1,x2d = Eisx2d − Eisx1d, s26d

where shisxd;e0
xdu sinhsud /u denotes the hyperbolic sine

integral function and Eisxd;e−`
x du eu/u is the exponential

integral function. Now setting the counterion density to zero
within the hard core[i.e., rcsrd=0,r øa, in Eq. (24)] fixes
the constanta,

a = −
eka

1 + ka
Ecs− ka,− kRd. s27d

Integrating Eq.(24) over the spherical shell volume of a
PE brush yields the fraction of counterions inside a brush,

f in = 1 −
1 + kR

kl
e−kR Sska,kR;ad. s28d

From this expression, it is clear that the counterion distribu-
tion, within the model, is determined entirely by two inde-
pendent dimensionless parameters,ka andkl, i.e., the ratios
of the macroion core radius and brush thickness, respec-
tively, to the Debye screening length.

From Eqs.(16) and (21), the induced electrostatic pair
interaction is given by

v̂indskd = −
4pZ2e2

e

k2

l2k4sk2 + k2d
fGska,kR;adg2, s29d

whose Fourier transform is

vindsrd = −
2Z2e2k2

pel2r
E

0

`

dk
sinskrd

k3sk2 + k2d
fGska,kR;adg2.

s30d

For nonoverlapping brushes, Eq.(30) can be reduced to the
analytical form

vindsrd = −
Z2e2

er
+

Z2e2

e
FSska,kR;ad

kl
G2e−kr

r
, r . 2R.

s31d

After adding to Eq.(31) the bare Coulomb potential between
the spherical macroions[Eq. (4)], the residual effective pair
interaction is

veffsrd =
Z2e2

e
FSska,kR;ad

kl
G2e−kr

r
, r . 2R. s32d

Thus, within the coarse-grained PE brush model and at the
level of linear-response theory, nonoverlapping PE brushes
are predicted to interact via an effective Yukawa pair poten-
tial of the same screened-Coulomb form as the long-range
limit of the Derjaguin-Landau-Verwey-Overbeek(DLVO)
potential [37] for charged colloids. This result is consistent
with previous linear-response results for charged hard

spheres[27,28], which interact via the DLVO effective pair
potential

veffsrd =
Z2e2

e
S ekR

1 + kR
D2e−kr

r
, r . 2R, s33d

and for PE stars[29], which interact via

veffsrd =
Z2e2

e
FshiskRd

kR
G2e−kr

r
, r . 2R. s34d

Note that the screening constant,k, in the pair potential de-
pends on the total density of microions—inside and outside
of the brushes—since all microions respond to the macroion
charge. We do not consider here overlapping brushes, in
which case steric interactions between chains also should be
included[24].

Finally, the volume energy is obtained from Eqs.(17),
(21), (29), and(30), as

E0 = FOCP− Nm
Z2e2k2

pel2
E

0

`

dk
fGska,kR;adg2

k2sk2 + k2d
− sN+ − N−d

kBT

2
.

s35d

Assuming weakly coupled microion plasmas, the OCP free
energy is well approximated by its ideal-gas limit,

FOCP= N+flnsn+L+
3d − 1g + N−flnsn−L−

3d − 1g, s36d

where n±=N± / fVs1−hhcdg are the average densities of
positive/negative microions in the free volume andL± are
the corresponding thermal de Broglie wavelengths. The
physical interpretation of the volume energy is straightfor-
ward. The first term on the right side of Eq.(35) represents
the entropy of free microions, the second term the electro-
static energy of microion-macroion interactions, and the third
term accounts for the background substraction. If the macro-
ion valenceZ is allowed to vary with concentration(e.g.,
through counterion condensation), thenE0 should be supple-
mented by the macroion self-energy. We emphasize that, be-
cause of its dependence on the average macroion concentra-
tion, the volume energy has the potential to influence
thermodynamic phase behavior. As a check of the present
results, it can be shown that in the two limiting cases of
vanishing PE shell thickness( l →0, with Z fixed) and, inde-
pendently, vanishing hard-core diametersa→0d, all analyti-
cal results reduce to those given in Refs.[27–29].

V. NUMERICAL RESULTS AND DISCUSSION

To illustrate applications of the theory developed above,
we present numerical results for the case of monovalent
counterionssz=1d in aqueous suspensions at room tempera-
ture slB=0.714 nmd. Figure 2 shows the predicted counter-
ion profiles around three different types of macroion, all of
the same outer radiusR=50 nm, valenceZ=500, and re-
duced number densitynmR3=0.01, for a salt-free suspension.
The chosen valence is within the upper limit suggested by
charge renormalization theory[38] for this size macroion:
Z,Os10dR/lB. For a star macroion, the counterion density
diverges logarithmically towards the center[29], while for
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brush-coated and bare hard-sphere macroions the counterion
densities remain finite. Figure 3 displays the corresponding
internal counterion fraction, i.e., fractional counterion pen-
etration, as a function ofkR. For a fixed ratio of hard-core
radius to outer radius,a/R, the internal counterion fraction
increases monotonically withkR, reflecting increasing per-
meability of the macroions to counterions with decreasing
screening length(e.g., increasing salt concentration). On the
other hand, whenkR is fixed, the counterion penetration de-
creases upon thinning of the PE brush(increasinga/R). In
the limit of vanishing brush thickness( l /R→0, a/R→1),
Eq. (28) reduces to

f insl → 0d =
ka

ka + 1
kl + Osl2d. s37d

Counterions are predicted to penetrate PE brush-coated mac-
roions less efficiently than stars.

Penetration of macroions by counterions can strongly in-
fluence screening of bare Coulomb interactions. Thus, effec-

tive pair interactions between brush-coated macroions de-
pend sensitively on the thickness of the PE brush. To
illustrate, Fig. 4 shows the effective pair potential for the
same three macroion types as in Figs. 2 and 3 and for two
salt concentrations,cs=0 M andcs=100mM, corresponding
to different Debye screening constantsk. For identical sys-
tem parameters, the strength of the Yukawa pair interaction
for nonoverlapping brush macroions is intermediate between
that for hard-sphere and star macroions. Figure 5 compares
the dependence of the macroion-size-dependent amplitude of
veffsrd, r .2R, on the Debye screening constant for the three
macroion types. The amplitude increases withkR for a fixed
ratio of hard-core to outer radius, while for fixedkR the
amplitude increases from the star limit to the hard-sphere
limit as the PE brush thins to infinitesimal thicknesssa/R
→1d.

VI. CONCLUSIONS

Summarizing, polyelectrolyte-coated colloids provide a
valuable conceptual bridge between charged colloids and
polyelectrolytes. In this paper, linear-response theory is ap-
plied to bulk suspensions of spherical colloidal particles
coated with PE brushes. Assuming stiff, radially stretched PE

FIG. 2. Counterion number density profiles of three types of
spherical macroion of outer radiusR=50 nm, valenceZ=500, and
reduced number densitynmR3=0.01 in water at room temperature
slB=0.714 nmd: PE brush-coated macroion[solid curve from Eq.
(24)], PE star [dashed curve from Eq.(20) of Ref. [29]], and
charged hard sphere[dot-dashed curve from Eq.(32) of Ref. [27]].
For the brush-coated macroion, the hard-core radius isa=25 nm
and the PE shell thickness isl =25 nm.

FIG. 3. Fraction of counterions[from Eq. (28)] trapped inside
PE brush as a function of the dimensionless parameterkR (ratio of
outer radius to Debye screening length) for several values ofa/R
(ratio of core radius to outer radius).

FIG. 4. Effective electrostatic interactions between pairs of non-
overlapping macroions of outer radiusR=50 nm, valenceZ=500,
and reduced number densitynmR3=0.01 in room-temperature water
slB=0.714 nmd at salt concentrations(a) cs=0 mol/ lskR.0.95d
and (b) cs=100mmol/ lskR.1.9d: PE brush-coated spherical mac-
roions [solid curves from Eq.(32)], PE stars[dashed curves from
Eq. (34)], and charged hard spheres[dot-dashed curves from Eq.
(33)].
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chains, we model each brush as a spherically symmetric shell
of continuously distributed charge, the charge density vary-
ing with radial distancer as 1/r2. By formally integrating out
the microion degrees of freedom, the Hamiltonian of the
macroion-microion mixture is mapped onto the effective
Hamiltonian of an equivalent one-component system. Predic-
tions of the theory include microion density profiles, effec-
tive electrostatic interactions between pairs of(nonoverlap-
ping) macroions, and a state-dependent one-body volume
energy, which contributes to the total free energy. The theory
presented here may provide a practical guide for choosing
system parameters to achieve desired interactions.

The main conclusions of this study are as follows.(i)
Trapping of counterions inside a spherical PE brush is highly
sensitive to variations in the core radius, brush thickness, and
Debye screening length of the solution. For a fixed ratio of
core to outer radius, the fraction of trapped counterions in-
creases monotonically with increasing outer radius or de-
creasing screening length. For fixed ratio of outer radius to
screening length, the fraction of trapped counterions de-
creases monotonically from a maximum in the limit of van-

ishing core radius(PE star macroion) to zero in the limit of
vanishing shell thickness(hard-sphere macroion). (ii ) Within
the linear-response approximation, the effective pair interac-
tion between nonoverlapping macroions has a Yukawa
(screened-Coulomb) form. (iii ) By varying core radius and
brush thickness, effective interactions between PE brush-
coated macroions can be tuned—in both amplitude and
range—between interactions for hard-sphere and star macro-
ions. For a fixed ratio of core radius to outer radius, the
amplitude of the pair interaction increases monotonically
with increasing outer radius or decreasing screening length,
while for a fixed ratio of outer radius to screening length, the
amplitude increases monotonically from the star-limit to the
hard-sphere limit. The range of the pair interaction, governed
by the Debye screening length, depends on the hard-core
volume fraction and so can be varied by adjusting the core
radius.

The range of validity of the coarse-grained model and
linearized theory studied here, and the accuracy of the pre-
dicted Yukawa form of effective pair interaction, including
amplitude and range, could be directly tested by future simu-
lations of more explicit models of PE-grafted colloids. Our
purely electrostatic model can be augmented by chain elas-
ticity and entropy—essential for describing overlapping PE
shells[24]. The mean-field linear-response theory can be re-
fined to incorporate nonlinear microion response[32] and
microion correlations, beyond the random-phase approxima-
tion. The theory also can be easily adapted to other macroion
types, such as core-shell microgels[29,39]. Future work will
explore thermodynamic phase behavior, which we anticipate
to be quite rich and tunable between that of charge-stabilized
colloidal suspensions and polyelectrolyte solutions.
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